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Abstract
The effects of the biased diffusion of particles on the growth of islands for a
model of deposition, diffusion and irreversible aggregation of particles forming
islands in two dimensions is studied. The direction of the bias is perpendicular
to the growth direction of islands and these islands act as obstacles for the
diffusing particles that collide with the lateral sides of islands without sticking.
Due to the biased diffusion the islands are composed by the agglomeration
of monomer chains. Using Monte Carlo simulations we found that the island
density exponent continuously increases from to 1/2 when the bias parameter
λ increases from λ = 1 to ∞, but the chain density exponent χc

∼= 1/3 is
independent of λ. For λ = ∞, the fully directed diffusion case, an expression
for the nucleation rate can be obtained which is in agreement with the numerical
results.

PACS numbers: 0540, 6855, 8115A

1. Introduction

Since the advent of the electron microscopy techniques which allow us to observe surfaces
with atomic resolution, the study of submonolayer deposition has attracted increasing interest
in recent years [1]. Several models have been studied from a theoretical point of view [1–16].
In these models, particles which arrive on a surface at a constant flux diffuse before being
incorporated into islands or before meeting other isolated particles and forming new islands.
Starting with an empty surface and when a coverage of particles θ is reached, the characteristics
of the submonolayer formed are analysed. If the islands can neither break or diffuse it is
expected that all processes depend only on the ratio R between the diffusion and deposition
rates. When R increases, particles perform on average a greater number of hops between the
incoming particles. Then, they have a greater probability of reaching pre-existing islands than
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forming new ones. At a fixed coverage θ and for large enough values of R, it is expected that
the island density N behaves as

N ∼ R−χ (1)

where χ is the so-called island density exponent.
In connection with the study of diffusion and growth of silicon islands on a Si(100)

surface, a model of aggregation of particles forming dimer chains on a square lattice has been
introduced [18]. In this model the diffusion of particles is anisotropic and the diffusion constant
in one direction of the square lattices isA times greater than the diffusion constant in the other
perpendicular direction (A being the anisotropy parameter of the model). The effects of this
anisotropic diffusion on the island density exponent for the case of irreversible aggregation
have been recently studied [18]. In order to understand the behaviour of χ the study has been
extended to a simpler model in which islands are composed of chains of monomers instead of
chains of dimers. It has been found that in a region of four to five orders of magnitude in R,
the value of the exponent χ depends on A. This non-universal behaviour can be understood
from the analysis of trajectories performed by tracer particles [19, 20].

The aim of this paper is to study the effects of a biased diffusion of particles on the growth
of islands. We use a model on a square lattice which is especially attractive for the study
of these effects because the direction of the bias (parallel to the y direction of the lattice) is
perpendicular to the growth direction of islands (the x direction). Due to the growth rules of
the model (explained in section 2), the islands are composed of chains of monomers oriented
along the x direction. These islands act as obstacles for moving particles that collide with the
lateral sides of these islands without sticking. The length of islands increases as they grow,
blocking an increasing number of channels in the y direction.

Let us comment that, although we do not attempt to simulate any specific experiment, in
real systems an electric field parallel to the surface can produce relevant effects on the growth
of islands due to the biased diffusion of particles on the surface (see e.g. [17]).

The outline of the paper is as follows. In section 2 we define the model. The Monte Carlo
results are presented in section 3. From these results we find that islands are composed by
the agglomeration of monomer chains and we explain why this agglomeration is due to the
biased diffusion of monomers. The value of the exponent χ depends on the bias parameter
and the value of the chain density exponent χc (Nc ∼ R−χc , Nc being the density of chains)
is independent of it. The density of islands increases with the nucleation of new islands and
decreases with the coalescence of close islands. In section 4, for the case of an extremely
large value of the bias parameter (fully directed diffusion), and analysing the trajectory of
monomers, an expression for the nucleation rate is obtained which is in agreement with Monte
Carlo data. Finally, in section 5 we summarize our results.

2. The model

The substrate is represented by square lattice of 3000 × 3000 sites. Periodic boundary
conditions were adopted in order to avoid edge effects.

At each Monte Carlo step, one site of the substrate is randomly chosen. The following
situations may occur:

(1) If the site is empty, it is occupied with a particle with probability ε.
(2) If the site is occupied and both its nearest neighbour (NN) sites in the x direction are

empty, the particle tries to jump to any of its NN sites in the x direction with probability
Px = 1/4, to the upper NN site in the y direction with probability p, or to the lower NN
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site in the y direction with probability λp. If the particle attempts to jump in the y direction
and the chosen NN site is occupied by another particle, the jump is not performed.

(3) If the site is occupied and any of its NN sites in the x direction is also occupied, nothing
happens. Particles located at NN sites in the x direction are bounded and form chains of
monomers.

Simulations start with the lattice empty and run until the density per site of deposited particles
reaches a desired value θ . We are interested in coverage low enough to avoid the percolation
regime [6], so the employed values of θ are θ � 0.2. The bias parameter λ (1 � λ � ∞) is
a free parameter of the model. We normalized the jumping probabilities by demanding that
2Px + p + λp = 1. Then p = 1/2(λ + 1). For λ = 1 the isotropic diffusion case is recovered
and λ = ∞ corresponds to a fully directed diffusion. The drift velocity of particles vdrift is
given by the difference between the probability of jumping downwards (λp) and upwards (p).
Then vdrift = (λ− 1)p = (λ− 1)/2(λ + 1) (vdrift = 0, 1/2; for λ = 1, ∞, respectively).

In this model, sites can be occupied, at most, by only one particle. Chains grow irreversibly
by aggregation of particles in the x direction and particles do not stick at the lateral sides of
chains. We consider that two chains connected by NN distances in the y direction belong to
the same island (see figure 1(a)). In this way an island can be formed by one isolated chain (a
chain without NN chains in the y direction) or a group of chains connected by NN distances
in the y direction.

Figure 1. (a) A typical island composed of K chains of monomers (K = 3 in the present case).
We denote the length of islands by L and the length of monomer chains by l. The crosses indicate
the growth sites. If one particle arrives at one of these sites it irreversibly aggregates to the island.
Two examples of coalescence are shown in (b) and (c). If a particle arrives at site i (case (b)) or j
(case (c)), coalescence between the two close islands will occur.
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(a) (b)

(c)

Figure 2. Representative samples of 350×250 sites from
lattices of 3000 × 3000 sites obtained from Monte Carlo
simulations forR = 107 and θ = 0.05: (a) for λ = 1 and
(b) for λ = 3. Full circles represent particles. Note that
in (a) most of the islands are formed by simple chains of
monomers. This holds for all values of R. A sample of
100×75 sites of the case (b) is shown in (c). Open circles
correspond to the sites visited by a monomer deposited
at the site marked by a full diamond. In this case the
monomer aggregates at the end of one chain denoted by
an open diamond, and there is no birth of a new chain.

For fixed values of θ and λ it is expected that all processes depend only on the ratio R
between the jumping rate and the deposition rate, R = (2Px + p + λp)/ε = 1/ε. Then the
relevant parameters of the model are θ , λ and R.

3. Monte Carlo results

Figure 2 shows typical examples of island structures obtained from simulations performed
with R = 107, θ = 0.05 and λ = 1 and 3. For λ > 1 islands formed for more than one
chain of monomers appear. These agglomerations of chains are due to the biased diffusion of
isolated monomers (monomers with the four NN sites empty). An isolated monomer moves,
on average, downwards. If during this movement the monomer reaches a lateral side of one
island, the movement downwards is stopped. This is because there is no interaction between
NN particles in the y direction and the monomer collides with the lateral sides of chains
without sticking. Then the monomer will diffuse in a region close to and above the island (see
figure 2(c)). If now, as a consequence of diffusion or deposition, a particle arrives at a NN site
in the x direction of the monomer, the two particles become bounded forming a new chain of
two particles. This new chain is formed near the old island. It is possible that the new chain is
formed above and upon the old island (i.e. at a NN distance in the y direction of the old island).
In this case the number of chains of this island is increased by one (K → K + 1, a new chain
is formed but not a new island). From the point of view of islands, this process corresponds
to an aggregation of two particles to the island. Note that in the case of λ = ∞ the monomer
cannot jump upwards (because p = 0). Then the new chain will be necessarily formed above
and upon the old one.
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Figure 3. The density of islands N versus R in log–log scales for θ = 0.05 and different values
of λ. λ = 1 (squares), 2 (circles), 3 (triangles), 7 (diamonds) and ∞ (crosses). The exponents χ
obtained from the straight lines are shown in table 1. The typical error bars of the Monte Carlo
data are approximately the same size as the symbols shown for each point.

Table 1. The exponents χ , χc and α for θ = 0.05 and different values of λ. The island and chain
density exponents χ , χc are obtained from Monte Carlo simulations. The exponent α is obtained
from equation (4). The relative error bars are below 2%.

λ χef χc α = χ − β
1 0.310 0.310 0
2 0.377 0.297 0.080
3 0.415 0.300 0.115
7 0.470 0.301 0.169

15 0.480 0.296 0.184
1000 0.486 0.301 0.185

∞ 0.487 0.302 0.185

Figure 3 shows logN as a function of logR for θ = 0.05 and different values of λ.
The exponents χ obtained from the straight lines are shown in table 1. Let us note that χ
continuously increases with λ from χ ∼= 1/3 for λ = 1, to χ ∼= 1/2 for λ = ∞.

Let K be the average number of chains per island (see figure 1(a)). Then

Nc ∼ KN (2)

where Nc is the density of chains. Following equation (1) it is expected that

Nc ∼ R−χc (3)

where χc is the chain density exponent. From equation (2) K ∼ Rα , with

α = χ − χc. (4)

The values of the exponents χ , χc and α obtained for θ = 0.05 and for different values of
λ are shown in table 1. Note that the value of χc is close to 1/3 and is independent of the value
of λ. In figure 4 NcR

0.30 is plotted against R in log–log scales for λ = ∞ and different values
of coverage θ . One can also observe here that χc does not depend on θ . From these and other
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Figure 4. Log–log plot of NcR
0.30 against R in log–log scales for λ = ∞ and different values of

the coverage θ . θ = 0.05 (squares), 0.10 (circles), 0.15 (triangles) and 0.20 (diamonds). Error bars
are approximately the same size as the symbols. The dashed straight lines have slopes of ±0.01
and have been drawn to guide the eye.

results obtained for other values of θ and λ not shown here, we can conclude that the chain
density exponent χc for 0.05 � θ � 0.20 is independent of λ and θ , and that the increases of
the island density exponent χ with λ is due to the agglomeration of chains (see equation (4)).
For λ = 1 the drift velocity is zero and there is no agglomeration (α = 0, see table 1): the
islands are composed by single chains and then the island density exponent is equal to the chain
density exponent. For λ = ∞ the exponent χ seems to be also independent of θ . We have
obtained χ = 0.487, 0.496, 0.498 and 0.495 for θ = 0.05, 0.10, 0.15 and 0.20, respectively.
As was explained in [19] the result of χ ∼= 1/3 for λ = 1 (the case A = 1 there corresponds
to λ = 1 here) is due to the two-dimensional diffusion performed by monomers and it is well
known that for a two-dimensional non-biased diffusion a two-dimensional exponent χ = 1/3
is expected [5, 10, 19].

4. Nucleation rate for λ = ∞

For λ = ∞ the monomers cannot jump upwards. Let us consider a monomer which reaches
an island. As was mentioned in section 3, one possibility is that the monomer will aggregate
to the island by finding another monomer and forming a new chain of two particles above and
upon the old island (andK → K +1). Another kind of aggregation takes place if the monomer
arrives at one of the growth sites of the island (see figure 1(a)).

The coalescence of islands is another process that occurs. As the coverage θ increases,
the length of islands also increases and it is possible that two islands become separated by
only one empty site in the x direction (see figure 1(b)). Now, if a particle arrives at this empty
site, the two islands coalesce and form one single island. Another example of coalescence is
shown in figure 1(c). If a particle arrives at site j the two islands will coalesce.

On the other hand, a nucleation of islands takes place when a particle arrives at a NN site
in the x direction of an isolated monomer. Then the probability of nucleation forming new
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Figure 5. (a) The island N , nucleation n, coalescence c and monomer Nm densities as a function
of coverage θ for R = 107 and λ = ∞. The dashed straight line corresponds to the mean value of
Nm.

islands is proportional to the density of isolated monomers, Nm, and the probability that a
particle collides with an island is proportional toNL, where L is the average length of islands
(see figure 1(a)). L corresponds to the cross section for an isolated monomer diffusing from
the top with a drift velocity perpendicular to the direction of L. When a monomer reaches an
island it is highly probable that either an aggregation to this island or a coalescence between
close islands will occur. Then the probability of nucleation, Pn, of new islands behaves as
c Nm/(c Nm + LN), where c is a constant (c depends on λ but in this section we are working
with λ = ∞) which takes into account that monomers are moving downwards and islands are
fixed. We will use this relation later on.

From the above discussion one has

N = n− c (5)

where n and c are the density of nucleation and coalescence, respectively (i.e. the total number
of nucleation and coalescence processes per lattice site which have been taking place from the
beginning of the simulation with an empty lattice up to the point of obtaining the final structure
at the coverage θ ).

In figure 5 N , n, c and Nm as a function of θ for R = 107 are plotted. One can see that
for small values of θ , N increases with θ , and N takes its maximum value at θe

∼= 0.07. For
larger values of θ , and due to coalescence processes, N decreases.

Let us now obtain the rate equation for nucleation [5, 10, 19]. Let τ be the lifetime of
isolated monomers between their deposition and nucleation or collision with an island. Then

dNm

dt
∼= (1 − θ) ε

�t
− Nm

τ
(6)

where�t is the time associated with each Monte Carlo step. We are neglecting the case where
a monomer is deposited at a NN site of an island or another monomer. But the probability of
these events is negligible compared to (1 − θ)ε/�t . The decrease of Nm/τ monomers per



410 F Vázquez et al

unit of time in equation (6) is due to nucleation, coalescence and aggregation processes. Then
dn/dt ∼ PnNm/τ , where Pn is the probability of nucleation. As mentioned above, Pn behaves
as c Nm/(c Nm +LN). For large values of R one has Nm � N (see figure 5) and also 1 < L.
Then Pn ∼ Nm/(LN) and

dn

dt
∼ Nm

τ

Nm

LN
. (7)

Also, forR 	 1 a quasi-stationary regime exists where dNm/dt ∼ 0 (see figure 5). Then from
equation (6) one has Nm/τ

∼= (1 − θ)ε/�t . Using the average number of steps, n, performed
by an isolated monomer n = (2Px + p + λp)τ/�t = εRτ/�t , one obtains from equation (7)

dn

dt
∼ (1 − θ)2 ε

�t

n

R

1

LN
. (8)

Due to the fully directed diffusion of isolated monomers, n is proportional to the average
distance between two consecutive islands in the y direction. Since the islands are randomly
distributed this distance isK/θ . Note that in this reasoning we are considering the collision of
isolated monomers with islands and not the nucleation processes. This is a good approximation
because Nm � LN . Finally, using dθ = (1 − θ)ε dt/�t one obtains

dn

dθ
∼ (1 − θ)K

θRLN
. (9)

In figure 6 (dn/dθ)[(1 − θ)K/θRLN ]−1 is plotted as a function of R for different values of θ .
From these Monte Carlo results one can conclude that equation (9) gives a good approximation
of dn/dθ for λ = ∞. The results are close to a straight line of slope zero indicating that dn/dθ
behaves as Rα+χ−1/L. For large values of R the density of monomers is much smaller than
the coverage θ , and then θ ∼= lKN . Assuming that L and l have approximately the same
behaviour one obtains dn/dθ ∼ R−γ , with γ ∼= 1 − 2α. From Monte Carlo data we found
that this is a reasonably good approximation for the exponent γ . Note that we cannot obtain n
as a function of R and θ integrating equation (9) because K , L and N are unknown functions
of θ .

5. Conclusions

The Monte Carlo results show that the chain density exponent χc does not depend on λ
(1 � λ � ∞), at least in the range of R used in this work and for 0.05 � θ � 0.20,
and the value of χc is close to 1/3. For λ = 1 the same result for χc was found in [19] (the
caseA = 1 there corresponds to λ = 1 here) and can be explained due to the two-dimensional
non-biased diffusion performed by monomers. The increase of the island density exponent χ
with λ is due to the agglomeration of chains. This agglomeration appears because the chain
growth direction (the x direction) is perpendicular to the direction of the drift velocity (the y
direction) and there is no interaction between NN particles in the y direction (the probability
of sticking at the sides of chains is zero). The agglomeration exponent α increases from α = 0
to α ∼= 0.19 when λ increases from λ = 1 to ∞. As χ = χc +α, the exponent χ increases from
χ ∼= 1/3 to 1/2. All these results hold for 105 < R < 1010 and for coverage 0.05 � θ � 0.20.

All the exponents (χ , χc and α) were obtained for R 	 1 and in a region of four to five
orders of magnitude in R. Nevertheless, all these must be considered as effective exponents
because their values can change in the asymptotic regime R → ∞. Unfortunately, to work
with R > 1010 is beyond our computational facilities.

It has also been found that the coalescence of islands plays an important role in the growth
of islands. The coalescence appears at very low coverage θ and its effects increase with
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Figure 6. dn/dθ [(1 − θ)K/θRLN ]−1 versus R in log–log scales for λ = ∞ and different values
of the coverage θ : θ = 0.05 (squares), 0.10 (circles) and 0.16 (triangles). For θ = 0.05 the error
bars are shown and using a least squares fit a straight line with a slope of 0.012±0.024 is obtained.
Note that the error bars for each point are larger than those shown in figures 3 and 4. The reason
for these large error bars is due to the numerical calculation of dn/dθ . The dashed straight lines
have slopes of ±0.03 and have been drawn to guide the eye.

θ . For larger values of θ , and at a constant value of R, the coalescence rate is greater than
the nucleation rate and the density of islands N decreases as a function of θ . This general
behaviour was found for all λ (for λ = ∞ see figure 5). Note that we have worked in the
region of θ which is far from the percolation regime and even in this region the coalescence is
relevant. To our knowledge, coalescence effects have not been taken into account in previous
studies of irreversible aggregation models in two-dimensional substrates at very low coverage.
Finally, for the case of λ = ∞, monomers cannot jump upwards. When a monomer reaches
an island it is highly probable that either an aggregation to this island or a coalescence between
close islands will occur. Analysing the trajectories of monomers and the probability that they
reach an island, an expression for the nucleation rate was found (see equation (9)) which is in
agreement with numerical results (see figure 6).
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